(Contents continued from outside cover)

SARAVANOS, D.A., VARELIS, D., PLAGIANAKOS, T.S. and CHRYSOCHOIDIS, N., A shear beam finite element for the damping analysis of tubular laminated composite beams	802
YLÄ-OIJALA, P. and JÄRVENPÄÄ, S., Iterative solution of high-order boundary element method for acoustic impedance boundary value problems	824
LI, K. and DARBY, A.P., An experimental investigation into the use of a buffered impact damper	844
GREEN, K., CHAMPNEYS, A.R. and LIEVEN, N.J., Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors	861
ALLAM, S. and ÅBOM, M., Sound propagation in an array of narrow porous channels with application to diesel particulate filters	882
PAVIĆ, G., Numerical study of vibration damping, energy and energy flow in a beam-plate system	902
PAVIĆ, G., Vibration damping, energy and energy flow in rods and beams: Governing formulae and semi-infinite systems	932
ALBERTSON, F., BODÉN, H. and GILBERT, J., Comparison of different methods to couple nonlinear source descriptions in the time domain to linear system descriptions in the frequency domain–Application to a simple valveless one-cylinder cold engine	963
NUNES, R.F., KLIMKE, A. and ARRUDA, J.R.F., On estimating frequency response function envelopes using the spectral element method and fuzzy sets	986
YILMAZ, C. and KIKUCHI, N., Analysis and design of passive band-stop filter-type vibration isolators for low- frequency applications	1004
REDEKOP, D., Three-dimensional free vibration analysis of inhomogeneous thick orthotropic shells of revolution using differential quadrature	1029
MEI, C., KARPENKO, Y., MOODY, S. and ALLEN, D., Analytical approach to free and forced vibrations of axially loaded cracked Timoshenko beams	1041
ZENG, J. and DE CALLAFON, R.A., Recursive filter estimation for feedforward noise cancellation with acoustic coupling	1061
KFOURY, G.A., CHALHOUB, N.G., HENEIN, N.A. and BRYZIK, W., Enhancement of the accuracy of the $(P-\omega)$ method through the implementation of a nonlinear robust observer	1080
Wu, S.R., Classical solutions of forced vibration of rectangular plate driven by displacement boundary conditions	1104
Wu, JS. and Hsu, SH., A unified approach for the free vibration analysis of an elastically supported immersed uniform beam carrying an eccentric tip mass with rotary inertia	1122
MALLIK, A.K., CHANDRA, S. and SINGH, A.B., Steady-state response of an elastically supported infinite beam to a moving load	1148
PALAN, V., SHEPARD JR., W.S. and GREGORY MCDANIEL, J., Characterization of an experimental wavenumber fitting method for loss factor estimation using a viscoelastically damped structure	1170
OH, I.K. and LEE, I., Supersonic flutter suppression of piezolaminated cylindrical panels based on multifield layerwise theory	1186
Short Communications	
HICKLING, R., Decibels and octaves, who needs them?	1202
SOROKIN, S.V., Analysis of propagation of waves of purely shear deformaton in a sandwich plate	1208
KRISHNA, B.V. and GANESAN, N., Polynomial approach for calculating added mass for fluid-filled cylindrical shells	1221

1221